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Received 2 September 1993, in final form 20 December I993 

Abstract The paper deals with random spiral motion described in polar coordinates: the 
trajectory of a partide is described by the distance I from a given point as a function of 
the angle 8 relative to a given direction. A stochastic description of the spiral shapes 
generated by the random variations of r and 8 is suggested, based on the following 
assumptions: (a) the ray r is made up of additive contributions corresponding to certain 
jump processes; (b) the angle p between two jumps is a random variable selected from a 
given probability law g(p) dp, with finite or infinite moments; (c) the contributions 
p, , p2.. . . of the different jumps to the ray r are independent random variables selected 
from a probability law p(p) dp with finite moments. An expression for the generating 
functional of a random spiral r(8)  is gjven in the form of an infinite series which can be 
used to evaluate the stochastic properties of the ray r. The asymptotic properties of the 
random spiral shapes depend on the function g(p) dp: if all moments of the angle between 
two jumps exist and are finite, the average shape is a linear Archimedean spiral <(e)) - B 
as 8-w, and the dispersion of the ray increases linearly with the angle (A?(S))-8 as 
8-m. I fg (p) , )~a longta i lg (p ) ) -p~"~~asp-w with l>H>O, theaverageshapeis 
a nonlinear (fractal) Archimedean spiral <r (8 ) ) -BHas  B+w,,and the fluctuations orthe 
ray have an intermittent behaviour (A?(8))-82Has 8-w. Acompleteanalysis is possible 
in a Markovian-like case for which the angle between two jumps is exponentially distributed. 
In this -e a closed expression for the generating functional is available and all cumulants 
of the ray can be computed exactly: the mth cumulant which expresses the correlations 
among the r a p  at different angles B , ,  . . . ,e, is proportional to the minimum angle 
min(B,, . . . , 5.3 and the intermittent behaviour is missing. An alternative stochastic 
description is suggested based on the assumption that the number ofjumps in a given angle 
interval is distributed according to an inhomogeneous Poisson law. This model is also 
analytically tractable; it is less restrictive in the sense that the average shape corresponds 
to a broader class of spirals including the linear and the fractal Archimedean and the 
logarithmic ones; however, it -not be used to describe the intermittent behaviour. 

1. Introduction 

Spiral motions and shapes have long been studied in specialized areas of science and 
technology ranging from mechanics, astronomy and astrophysics to chemistry, bio- 
chemistry and anatomy (Seiden and Schulman 1990, Saslaw 1985, Murray 1989, Wes- 
freid et al 1988 and references therein). Quite recently a more general interest has 
appeared with new approaches of potentially wider applicability being proposed (Davis 
1993 and references therein). The spirals are intimately connected with various aspects 
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of nonlinear dynamics from nonlinear wave propagation (Wesfried et a/ 1988) to the 
geometrical and statistical fractals (West 1990). In spite of their ubiquity, the theoretical 
descriptions of the spiral motions and shapes corresponding to different processes are 
based on different approaches. As far as we know in this field, a unitary mathematical 
description is still missing. 

The aim of this paper is to outline the possibilities of the stochastic description of 
spiral shapes or motions by means of the formalism of random walks. Although random 
walks are commonly used for describing various natural processes (Weiss and Rubin 
1983, Haus and Kehr 1987, Bouchaud and Georges 1990 and references therein), their 
possible applicability to the study of spiral motions or shapes has been ignored. The 
underlying idea used in this paper is to describe a spiral as a random walk in polar 
variables: ray length-polar angle. The plan of the paper is as follows. In section 2 we 
present some basic notions related to the description of a spiral in terms of a random 
walk. In section 3 we discuss a simple model for which a complete analytical solution 
is available. In section 4 a renewal-type generalization of the model introduced in section 
3 is analysed. In section 5 we suggest another generalization based on the use of an 
inhomogeneous Poisson process. Finally, in section 6 a comparison among the 
approaches introduced in this paper is made and the possibilities of application are 
analysed. 

2. Basic notions 

A plane spiral is usually described in polar coordinates 

r = r ( 0 )  (1) 
where r is the distance (the length of the ray r)  from a given point (the centre) to a 
current point of the spiral and 0 is the angle made by the ray r with a given direction. 
If function (1) is periodical with a period of 2a, then the corresponding shape is a 
closed contonr. A spiral corresponds to the case where r=r(B) monotonically increases 
with the increase in the angle 0. 

We are not interested here in the 'deterministic' spirals corresponding to a given 
function r(0) but rather in the stochastic spirals for which r(0) is a random function; 
just as for a deterministic spiral, for a random spiral a given realization r(0) should be 
a non-decreasing function of 0. The properties of a stochastic spiral may be described 
by the probability density functional 

where D[r(0)]  is an integration measure over the space of functions r(0)  and stands 
for functional integration. The main property of interest of a stochastic spiral is the 
average value of the ray length correspondmg to a given angle, 
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The superior moments are also of interest : they are a measure of the shape fluctuations. 
We use the central moments 

The computation of these moments is easier in terms of the generating functional 

where q(0) is a suitable test function of 8. In terms of Z[Q(S)] the central moments 
and the cumulants are given by the functional derivatives 

and 

By borrowing an idea from tbe random walk theory (Weiss and Rubin 1983, Haus 
and Kehr 1987) we assume that the random spirals are generated by the contributions 
of many independent increments p o ,  pl , . . . , p,., . . . selected from a certain probability 
law 

with finite moments. A given realization is made up of a succession of jumps. For each 
jump an additional increment to the value of the ray length is added; after the occurrence 
of q jumps the ray length rq is equal to 

( 10) 

where rq- I is the ray length after q- 1 jumps, po is the initial value of the ray length 
and pI ,  . . . , pm are the increments corresponding to the different jumps. Between two 
jumps the ray length is constant. The jumps take place at different angles 
e l ,  B z ,  . . . , e,, . . . . The different models presented in this paper correspond to different 
stochastic properties of the angles e,,  02,. . . . 

rq= rq-~, + pq = po + pI + . . . + pq  
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3. Marko*ian spiral shapes 

We start out by considering the Markovian spiral shapes for which the angles 
9,, 92,. . . ,9,, . . . between two successive jumps are independent random variables 
selected from an exponential probability law 

g(9)-exp[-const 91. (1 IC) 

The absolute angles e,,  02, . . . at which the jumps occur may be expressed in terms of 
the relative angles Q ~ ,  pl2,. . . by means of a recursive relationship similar to equation 

(12) 

We notice the similarity with a continnous time-directed Markovian random walk of 
a particle in one-dimensional space; the ray length corresponds to the position of the 
moving particle and the angle to the time. However, this analogy is rather format and 
quite limited. In the random walk theory we are interested only in the moments of the 
position of the particle at a given time. On the other hand, the stochastic properties 
of a spiral shape are described in terms of the probability density functional 
$[r(O)]D[r(e)]. In the random walk theory little attention is paid to the probadensity 
functional of the position of the particle as a function of time. Most approaches do 

not even use such a notion. 
The probability density functional can be expressed as an average of a delta fmc- 

tional symbol 

(IO): 

er= er- , + 9,= R+ 91 + . . . + qq. 

which corresponds to the superposition law (IO) over all possible values of the incre- 
ments PO, PI.. . . , p,, . . . and over the angles of occurrence of the different jumps 
el ,  . . . , e,, . . . and over all possible numbers of jumps. In order to evaluate this aver- 
age, for a given succession of angles @,> 8,- > . . .2 O1 we introduce the probability 

(144 yq(e1,. . . , e,) de, .  . .de, 

that there are q jumps and that the angles of occurrence of these jumps are between BI 
and &+d6’1,. . . and 0, and O,+dO,, respectively. This probability.density can be 
evaluated in terms of the probability densityg(9) d 9  of the angle between two successive 
jumps. As the angles pl, . . . , pq are independent random variables, we have 

w q ( B I , .  . . , eq) d e I . .  . de, 

=g(el)g(e,-el) ...g(e,-e,-I)f(e-eq)de, ... de, (15) 
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where 

is the probability that no jumps occur in the angle iuterval 0, q. 

evaluated easily: 
By using the function yq the average of the functional delta symbol (13) can be 

m ( e ) l ~ [ r ( e ) ~  

is the Laplace transform of the probability distributionp(p). The details of the deriva- 
tion of equation (18) are presented in appendix 1. 

Equation (18) is valid for an arbitrary probability density g(q). If g(p) is given by 
the exponential distribution (1 IC), then equation (18) is simplified. The first step is to 
express equation (1 I C )  in the standard form: 

where 

is the average angle between two jumps. The probabilityf(p) can be easily computed, 

A?) dq=exp(-d(/(p)). (22) 
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The next step is to change the integration limits over e l ,  . . . ,e, by assuming that there 
are no restrictions concerning the relative positions of the angles at which the jumps 
occur. For that we use the relation 

loe., , loe2.. . de,. . . de,=- ' loe., , lo'. , .deI .  . . de, (23) 
q !  

which is commonly used in statistical physics. By removing the restrictions 
e,, 0,- I a. . . a 0 ,  the positions of the different jumps are equivalent and a l / q !  Gibbs 
factor should be introduced in the RHS of equation (23). For a proof of equation (23), 
see Chandrasekhar and Munch (1950). By inserting the expressions (20) and (22) for 
g(9) andf(p) into equation (18) and using equation (23), we arrive at 

where 
v w  = e / w .  (25) 

By examining equation (24) we see that it is in fact the expansion of an exponential, 

In order to clarify the significance of the parameter v ( 0 )  we compute the function 
yq(BI , .  . . ,e,) by using equations (20) and (22). We get 

dei .de, v,(el, . . . , e,) del  . . . d8,=[~(e)]~exp[-v(B)1-. . . -. e e 
By integrating this equation over all possible values of el,. . . , 0, we obtain the prob- 
ability R(q) that there are q jumps in an angle interval of length 8 :  

m) = [ ~ ! I - ~ [ ~ ( Q ) I ~  exp[-v(e)i. (28) 
R(q) is a Poissonian with a parameter v(0) .  Thus, v(0) is the mean number ofjumps 
in an angle interval of length 8. 

Expression (26) for the generating functional Z[q(S)] contains all the information 
necessary for describing the stochastic properties of the random shape r(0). In order 
to extract this information we use the following expansions of the Laplace transform 
of the probability density&): 

< P"> $" m 
j ( s ) =  c (-1Y- 

m - 0  m! 

and 
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where (p") and <p") are the central moments and the cumulants of the increment of 
the ray length corresponding to a step, respectively. By inserting equations (29) and 
(30) into equation (26) we obtain 

In appendix 2 we prove the relationship 

I,,,=10ed9~qedtJ~ ...Iq6dO,,,... 

= joe deI .  . . jO6 de, joe' cl9. . . 

where 

e;=min(O,, ..., e,) (33) 

is the minimum angle from the set (e,,  . . . , e,,,). By using equation (32) we can rewrite 
equation (33) in the standard form of a cumulant expansion, 

1 
(p") min(OI, . . . ,e,) (34) 

By evaluating from equation (34) the functional derivatives (8) we get the following 
expressions for the cumulants of the ray length : 

(35) 
1 

< r ( e d . .  . r(s,)>>=<~">>+-(~")min(e~, . . , , em). 
(9) 

In particular, the average value of the ray length at an angle 6' and the correlation 
function of the ray lengths a t  the angles 0 ,  and O2 are given by 

< r ( e ) > = < p ) [ l  +~/ ( (P ) I  (36) 

<Ar(edA.r(W> = <r(Ol)r(02)> 

We note that the asymptotic behaviour of the average shape for large angles is given 
by an Archimedean spiral: 

<r(e)> - [ ( P > / ( ( P > l e  a~ e+w (38) 
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Similarly, the dispersion of the particle shape increases linearly with the increase in the 
angle, 

and the relative fluctuation [<A?(0))]1~2/(r(0)) tends to 0 as 
<A?(@> = t<p2>l<v>le as 8-tm (39) 

as &Co. (40) 

as B-tm, 
1/2 2 112 ~<Ar2(~)>I"2//<r(~)>= [<P) <P ) /<p>le-'12 

Thus the relative fluctuations of the particle shape become negligible as O-tm. 
The joint probability density 

Pq(rq, e,;. . . ; rI ,  0,) dr,. . . drl (414 1. . . j P q  dr, . . . drl = 1 ( 4 ~  

that at the angle O1 the ray length has a value between rl and rI +drl,. . . , and that at 
the angle eq the ray length has a value between r, and rq+drq, can also be evaluated 
from the generating functional. We introduce the multiple Laplace transform 

F&, 0,;. . . ;sl, OI)=Jom..  . Sexp(-zsqrq)Pqdr,.. . drl .  (42) 

From the definition (6) of the generating functional we note that we have 

pq(aq, e,;. . . ;s l ,  ~ ~ ) = z [ ~ ( e ) = ~ ~ , ~ ( e - e , ) i .  (43) 

Thus, at least in principle, Pq may be evaluated from equations (26) and (43) by 
means of a multiple inverse Laplace transformation. In particular, we get the following 
expression for the Laplace transform PI(s, e) of the one-point probability density of 
the ray length: 

Fds, e) =As) exp[(iXs)- W v > l .  (44) 
Relationship (44) may be obtained by applying the Laplace transform to the Markovian 
master equation 

<v>%Nr, e)= p ( M d r - p ,  0 )  dp-Pdr, 'e) (45) Ior 
with the initial condition 

Pl(r, 0 =0) =p(r) (46) 
which results by using the analogy to the continuous-time random walk. 

4. Non-Markovian spiral shapes 

A non-Markovian stochastic spiral results by replacing the exponential distribution 
g(q) (equation (1 Ib) or (20)) by an arbitrary probability density having either finite or 
infinite moments. In this case, equations (15)-(18) and (41)-(43) derived in the preced- 
ing section remain valid. A closed expression for the generating functional Z[q(e)] is 
no longer available. However, the central moments may be derived step by step from 
equation (18) by evaluating the functional derivatives (7) and applying the Laplace 
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transform to the results. Inserting equation (18) into equation (7), after some standard 
calculations, we obtain 

9(r(0) )=Sm ( r ( 0 ) )  exp(-x0) d0 
0 

= f (q+ 1v(.)( jm exp(-pWdp) dp)x-' g4(x)[1-~x)llS=o 
q=0 0 

m 

9f( 0) = x-'[l -&)I g(x) = Yg(0) = Io eC"'g(0) dB (49) 

and the fact that after the evaluation of the functional derivatives in the resulting 
expressions the multiple integrals over 01,.  . . , er have the structure of a multiple 
convolution product: 

JOm exp(-xO)~Ioe.. . ~oo2g(01) .  . .g(Oq-Oq-l)f(O-O,) d01 . . . d0,dB 

= m g ( ~ ) @ ) 4 @ f ( ~ ) l  =C4(x)[1 -C(x)l/x (50) 

where @ denotes the convolution product over angles. 
The asymptotic behaviour of the first two moments of the shape depends on the 

form of the function g(9). By making an analogy to the continuous-time random walk 
theory (Shlesinger 1974) we distinguish the following two cases: 

(a) all moments ofg(p) exist and are finite. For x-0, which corresponds to 9+m, 
we have 

1 -g(x) = ( q ) x  +0(2) as x+O (51) 

(b) g(q) has a long tail of the inverse power law form 

g(q)wp-'"+f' asq-ioowithI>H>O. 

The latter situation corresponds to a statistical fractal characterized by the scaling 
exponent H. The Laplace transform g(x) has the following behaviour as WO: 

1 -g(x)=Bx" as x-0 with B>O. (53) 
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By inserting equations (51) and (53) into equations (49) and (50) and coming back 
to the angle variable we can evaluate the asymptotic behaviour of the first two moments 
as 0-m~. In case (U) we recover the relationships (38) and (39) derived in the preceding 
section; it follows that the average shape for 0 - m  corresponds to a linear Archimedean 
spiral and the relative fluctuations of the shape become negligible as @+Co. 

In case (b) the Laplace transforms of the first two moments may be approximated 
by 
Y ( r ( e ) > = B -  x 
Y<r2(8)> = <p2>~-'x-(H + I )+2<p)2g(x )~ -Z~- (zH*1 )  

from which, by coming back to the angle variable and by keeping the dominant terms, 
we obtain 

as x-0 I - ( H + I )  

(54) as x-tO 

where T ( y )  is the complete gamma function and 

&r(H+ 1) 
E ( H )  = -1. 

2 2 H - 1 r ( ~ + + )  (57) 

Here we have used the well-known duplication formula of the gamma function, 

r ( 2 ~ ) = n - I / ~  2 2 H - I r ( ~ ) r ( ~ + 9 .  (58) 
The average shape for B+co corresponds to a nonlinear Archimedean spiral (equation 
(55)). The increase of the average ray with the angle 0 is slower than in the Markovian 
case. The relative fluctuation 

(Ar2(e)>'/2/(r(s)> -, t&(H)llP as B+co (5% 
tends towards a constant value rather than decreasing to zero. This illustrates the 
intermittent behaviour of the fluctuations of the shape. The scaling exponent of the 
increase in the dispersion (A?(@) with the angle 8 is two times bigger than the scaling 
exponent corresponding to the average value ( r ( 8 ) ) .  It follows that in this case the 
shape fluctuations are not negligible in the limit 8-tco. These results are valid for any 
value of the exponent H between 0 and 1 (1 > H>O). In this range the function &(H) 
is always positive and thus equations (56) and (59) are physically consistent. 

The joint probability densities Pq(r,, e* ; .  . .; rI , el)  (equation (41)) may be evalua- 
ted by applying equations (IS), (42) and (43). As in the preceding section, we limit 
ourselves to the evaluation of the one-point probability density Pl ( r ,  e). By combining 
equations (18), (42) and (43) we get the following expression for the double Laplace 
transform of Pl(r, e) :  
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This equation can also be obtained as the solution of a master equation of a non- 
Markovian type. We introduce the rate of occurrence of a jump in an angle interval 
B. g+dq: 

a(@) d v = g ( d  dv/f(?). (61) 

We define the probability 

that at the absolute angle 6 the ray length is between r and r+dr  and that the angle 
interval from the last jump is between q~ and p+ dq. In terms of I ( 9 )  dq we can write 
a set of balance equations for I , ( r ,  9, 0) which is similar to the system of age-dependent 
master equations from the random walk theory (ADMB, Vlad and Pop 1989a, b): 

(ae + aq)n( r ,  9, e) =-a (p)pI(r, 9, e) (63) 

(64) pl(r, p=o, e)= /o'/oo ~ ( v ' ) p ( p ) ~ l ( r - p ,  @, 6) Qd@ 

with the initial condition 

W r ,  9, O = o ) = ~ ( r ) W v ) .  (65) 

By integrating P 1 ( r ,  9, 0) over all values of q we should get Pl(r ,  e) :  

In appendiw 3 we show that by solving equations (63)-(66) for P,(r ,  6) we recover 
equation (60). 

5. An alternative approach 

At present the catalogue of possible average shapes is rather poor: we can either get a 
linear or a nonlinear Archimedean spiral. In order to enlarge the catalogue of possible 
spiral shapes we shall introduce a generalized model based on the use of inhomogeneous 
Poisson statistics. We assume that the probability R(q)  that there are 9 jumps .in an 
angle interval of absolute length 6 is given by a relationship similar to equation (28), 

m i  0) =[V(Q)IW)-' exp[-WI (67) 
where v(0 )  is an arbitrary non-decreasing function of 0, not necessarily a linear one. 
The position 8' of any jump occurring in the angle integral of length 0 is an independent 
random variable selected from a given probability law, 



1802 M 0 Vlud 

Although the positions Bi , . . . ,e ;  of the jumps are independent of each other, they 
are all selected from the probability law (684 which depends on the length 0 of the 
angle interval considered. In the present description a new feature arises which is missing 
in previous approaches. The probability density <(e'le) depends both on the current 
angle 0' and on the total length 0 of the angle interval considered, and the jumps are 
inhomogeneously distributed. In order to make a distinction between these two types 
of angles in this section, the current angles bear a prime (e', e ; ,  . . . , Ob, etc). 

The probability density functional $[r(O')]D[r(Q')] of the shape may be evaluated 
as an average of the delta functional symbol (13), 

MOP[W)I = 9-0 F jpo . . . jpq joe jo' . . . Io' &[w) -jo ~r]D[@')l 

x [ v ( e ) l q ( N  ~ X P [ - W I P ( P ~ )  dpo . . . p (pq )  dp, 

x c(ei I e) dei. . . {(e;[ e) de;. (69) 

The corresponding generating functional can be evaluated in the same way as in section 
3. We have 

9' I 

By comparing equations (26) and (70) we notice that the Markc ian model discussed 
in section 3 may be recovered as a particular case of OUT present approach which 
corresponds to 

By inserting equations (71a), (71b) and (72) into equation (70) we recover equation 
(26). 
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By using the expansions (29) and~(30) and the integral relation (32) we can write 
the generating functional (70) in the standard form of a cumulant expansion, 

z[q(O')l=exp{ (-1y(m!)-' Joe. .  . jo' q(e ; ) .  . . q(e:) 
00 

H I - 1  

min(ei,.&) 

((91 8) dq] de1 .~ . . de;"} (73) So x [ 0 8 3  + - v ( e ) w >  

om). . . r(e:)))=((p"))+(p'")v(e) 

from which we get the following expressions for the cumulants: 
min(cri,...,e;) 

((ai e) dq. (74) s, 
<r(e?>=<pm>>+<pm>v(e) joe'c(Pl e) dv (75) 

In particular, the average shape and the dispersion are given by 

<A?(~?>=<AP'>+~<AP'>+<P>'J~(~)  ioe' Hal 8)  da. (76) 

The asymptotic behaviour of equations (75) and (76) at the end of the interval 
(&=e) as 0 - m  is 

w)) = w ( e )  @=e e+m (77) 

(A?(e)> = ( p 2 > w )  w = e  e+m (78) 

<Ar2(e)>"'/<+9)> = [<~~)'/~/(p)i[V(e)l-'/~ e+m. (79) 

and the relative fluctuation of the shape may be approximated by 

As v(6') is a non-decreasing function of 0, as @-io0 the relative fluctuation is generally 
negligible and the intermittent behaviour is missing. The main new feature of the model 
is that for 6'- a, the average shape is determined by the function v(e) ,  which is positive 
and non-decreasing but otherwise arbitrary. For instance, if v(B) is an exponentially 
increasing function 

v(e)= v(0) exp(a0) ' a>O (80) 

the average. shape is given by a logarithmic spiral 

< r W >  -<p>v(O) exp(a8) for@=B e+o0. (81) 

For such a logarithmic spiral the decrease of the relative shape fluctuation as B+m is 
exponential, i.e. much faster than in the Markovian case studied in section 3: 

(A?(e)>'/2/<r(">=r(~2>'/2/<~>"(0)1-''Z exp( -fa69 as 0 - m .  (82) 

For 8'< 0 and variable {(S'I 0) the description of the random shape in terms of a 
master equation is generally not possible. This is due to the fact that a variable probabil- 
ity density ((0'1 8 )  leads to a non-Markovian behaviour. However, at the end of the 
interval, e'= 0, the one-point probability density is independent of {(@I e) and a master 
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equation description is possible. By applying equations (42), (43) and (70) we get the 
following expression for the Laplace transform of PI@, 0) :  

F ~ s ,  e) =m exp[v(Q)(p(s) - 111. (83) 

Equation (83) may be obtained by solving an angle-inhomogeneous master equation: 

1 -- [ {:p(p)Pl(r-p,  e) dp-P,(r, e) 
ae ae (84) 

with the initial condition (46). 

6. Discussion 

There is a partial overlapping among the three approaches presented in this paper. The 
first approach is amenable to a thorough analytical treatment; it has the disadvantage 
that the only possible average shape is a linear Archimedean spiral. The third approach 
circumvents this difficulty in a rather formal way by using inhomogeneous Poissonian 
statistics. The most complex model is the second one. Although for the second model 
only two different average spiral shapes are possible, it presents an interesting feature 
which is missing in the other two models : the absolute shape fluctuations are intermittent 
and the relative fluctuation does not vanish for large angles but tends towards a constant 
value. 

In order to illustrate the Werent types of asymptotic behaviour we have computed 
the average shapes and the relative fluctuation for three different cases. Figures 1, 
2 and 3 show the average asymptotic behaviour for linear Archimedean, nonlinear 
Archimedean and logarithmic spirals, respectively; we see that the average shapes have 

-100 100 

Figure 1. The average asymptotic behaviour for a linear Archimedean spiral with 
(P>/(?>=1. 



A random walk approach to spiral motion 1805 

100 

-100 
-100 100 

Figwe 2. The average asymptotic behaviour for a nonlinear Archimedean spiral with €I= 
0.5 and ( p > / [ K ( H + l ) ] =  1. 

a similar behaviour in the linear and the nonlinear Archimedean cases; in contrast, the 
asymptotic behaviour for a logarithmic spiral is different. We notice that the analysis 
of the average behaviour cannot be used to identify tbe presence or absence of the 
intermittent behaviour; for that a fluctuation analysis is necessary. Figure 4 displays 
the asymptotic behaviour of the relative shape fluctuation in the linear Archimedean, 
nonlinear Archimedean and the logarithmic cases. For the nonlinear Archimedean 
model the fluctuations are intermittent and the relative fluctuation is asymptotically 
constant, whereas for the linear Archimedean and the logarithmic models the relative 
fluctuation decays to zero, obeying an inverse power law and an exponential law, 
respectively. 

In this paper the analogies to the usual random walk description have been outlined, 
in particular the possible use of master equations. The analysis has shown that the 
generating functional formalism is more appropriate for describing the shape fluctua- 
tions than the master equations. The generating functional gives an integrated account 
of the random behaviour of the whole shape of the spiral; in contrast, the master 
equations give a local description. 

Concerning the potential applicability of the approaches presented here, they may 
be used as semiphenomenological (mesoscopic) models for the different systems in 
which spiral shapes or motions may occur, for instance in connection with the percola- 
tion description of galactic structure (Seiden and Schulman 1990), the study of hiologi- 
cal shapes (Thompson and D’Arcy 1992, West 1990), pattern generation (Murray 1989) 
and the propagation of nonlinear chemical waves (Wesfried et a1 1988). 
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-20000 

-20000 20000 

Figure 3. The average asymptotic behaviour for a logarithmic spiral with (p)v(O) = 1 and 
e=10". 

< A A  0) > * 5  

<r(0)> 

ear Archimedean 

0 
e 200 20 

Figure 4. The asymptotic behaviour of the relative shape fluctuation for linear Archi- 
medean, nonlinear Archimedean and logarithmic spirals with (q>'D(p2)''1/(p) =20; 
a= 10.' and [ (pz) ' /2/(p)][v(0)]~' '*=10.  
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xp(ro)p(rl -ro) . . .p(rq-r,-1) de l  . . ~ d8,dro. . . dr, (Al.l) 

where 

F= Joe ;rl(e)de FF [oe'q(0) d0 I=1,. . ., q. (Al.2) 

By using the algebraic identity 

rq(F-Fq)+rq-,(Fq-Fq-,)+ . . . +rl(Fz-Fl)+roFl 

= (r,-r,-d(F-~,) + (rq-I -rq-z)(F-Fq-l) 

+ . . . +(rI-rO)(F-Fl)+rOF (A1.3) 

we can use the integration variables 

PO= ro, PI = rI -ro, . . . , pq=rq -r,- (A1.4) 

In terms of pl ,  . . . , p,, the (q+ 1)-fold radial integral from equation (Al.1) factorizes 
into a product of q+ 1 independent integrals which can be expressed in a closed form 
by means of the Laplace transform ofp(r), p(s) :  

jom . . . jo" exp[ - roFl - rI (F2 - Fl) - . . . - rq(F- Fq)l 

xp(ro)p(rl -Yo) . . .p(rq-rq-l) dro . . . dr, 

= fi [Lj (F-~JIP(F) .  
I- 1 

(A1.5) 
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By inserting equation (A1.5) into equation (Al . l )  and expressing the factors 
F, 4,. . . , Fp in terms of q(8) by means of equation (A1.2) we get equation (18). 

Appendix 2 

Equation (32) may be proved by mathematical induction. For m = 2  the integral I, 
becomes 

I,= Ioe dp, Jve dB1 Jvg de2 . . . =jfJ. . . dodel de2 W . 1 )  
D2 

where the integration domain DZ is given by 

D2 0 2 01 3 9, e2e23p, e>p,>o. (A2.2) 

By changing the order of integration in equation (A2.1) we obtain 

jJjD,. . . dp,d& de2 

= j e d f l 1  0 ~ e d ~ n [ h ( 8 1 - 8 ~ ) ~ o ~ z d p  0 ...+b(Bz--Bi)jQe'dq...] (A2.34 

where h(x) is the usual Heaviside function. We notice that the sum of the two integrals 
over 9 in the RHS of equation (A2.3~)  may be written as 

h(&-02) Joe2d9.. .+h(82-01) jOe1d9.. .=jo d 9  . . .  (A2.3b) 

that is, equation (32) is true for m=2. 

validity of equation (32) for m+m+ 1. I,+I is given by 

min(RN%l 

Now we should prove that the validity of equation (32) for a given m implies the 

(A2.4) 

As equation (32) is assumed to be valid for a given m, it can be used for changing the 
order of the 6rst m + 1 integrals over 9, e,, . . . , 8, in equation (A2.4). We get 

I,+l=jOed& . . . ~ O R d ~ ~ ~ o e ~ d p , ~ ~ R d ~ ~ ~ + l  . _ .  (A2.5) 

with 

O2=min(O1,. . . , Om). 
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By changing the integration order over 9 and e,,,+! in equation (A2.5) we have 

Im+l=JBdOl..  . ~adOiliI[h(B,?,-B.+I) 1 d q . .  .+h(&,+~-e,?,) Ioa'dq.. .] e,,, 

0 0 0 

= Joe de, .  . . [ d&+I (oe'+' dq . . . (A2.7) 

where 

=min(8:, 8,+1)=min(BI,. . . , (A2.8) 

It follows that the validity of equation (32) for a given m implies the validity of the 
same equation form+ 1. As equation (32) is true for m = 2 ,  it turns out that, according 
to the method of complete induction, equation (32) holds true for any positive 
integer m. 

Appendix 3 

By differentiating equation (16) and expressing in the resulting equation the function 
g(q) from equation (61), we get a relationship betweenf(9) and A(9): 

df  (9)/d9= - A ( d f  (9). (A3.1) 

By integrating equation (A3.1) and taking into account thatf(0) should equal 1, we 
obtain 

f ( q )  = exp [ - j' A d9]- (A3.2) 
0 

By combining equations (61) and (A3.2) we can express g(p) in terms of A ( q ) :  

(A3.3) 

Now we integrate equation (63) with the initial condition (65)  and use the expression 

(A3.4) 

(A3.1) for f (q). We have 

11 (r, q3 8 )  = h( e - 
where 

c(r, e - P) .m + h( I - e i ~ ( r )  6( - e) f(49 

C(r, B)=P,(r,O, e). (A3.5) 

By inserting equation (A3.4) into equations (66) and (64) we get an expression for 
Pl(r ,  0) in terms of C(r, 0) and an integral equation for C(r, e), respectively: 

~ r ,  @)=I f ( w ( r ,  e - q ) d 9 + f ( w r )  (A3.6) 

e 
(A3.7) 

a 

0 

c ( r ,  @=l'j g ( q ) p W W - p ,  6'-d dp,dp+g(W J ' p ( p l p ( r - ~ )  dp. 
0 0  0 
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By means of a double Laplace transformation, equations (A3.6) and (A3.7) are 
simplified: 

P,(s ,  x )  =f(x)&, X ) + R X ) j ( S )  (A3.8) 

Z(S, x) =&?(x)j(s)&, x )  +&?(X)j2(S).  (A3.9) 
By solving equation (A3.9) for ?(s,x) and inserting the resulting expression into 
equation (A3.8) we recover equation (60). 

- 
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